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ABSTRACT

INTRODUCTION

THEORY

GENERALIZED Y-MATRIX OF ARBITRARY H-PLANE
WAVEGUIDE JUNCTIONS BY THE BI-RME METHOD

Fig. 1. An arbitrarily shaped H-plane waveguide element.
Many TE modes are considered at the planes S .
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This paper describes the extension of the BI-RME
method to the determination of the generalized Y-
matrix of arbitrary H-plane waveguide junctions. The
method yields this matrix in the form of a pole expan-
sion in the frequency domain. The generalized ma-
trix is very useful in the wideband analysis of complex
structures that include the junction as a building block.
An example demonstrates the advantages of this exten-
sion of the BI-RME method.

Recently, we described and implemented in a CAD
tool a very efficient algorithm (BI-RME method) for
the wideband modeling of waveguide components [1],
[2], [3], [4], [5]. Though, in principle, the BI-RME
method can be used to analyze “en bloc" very complex
circuits (e.g., multiplexers or beam forming networks),
its direct use in the analysis of large components may
be not convenient. In this case, as a rule, it is preferable
to segment the component into building blocks and to
apply the full-wave analysis only to the blocks whose
frequency behavior is unknown. The building blocks
must be modeled by some generalized matrix, such as
the Y-matrix [6].

This paper describes the extension of the BI-RME
method to the determination of the generalized Y-
matrix of an arbitrarily shaped element of a rectangular
waveguide circuit in the H-plane (Fig. 1). Apart from
the efficiency of the BI-RME method in the analysis
of the blocks, the peculiarity of yielding directly the
wideband model of a block in the form of a pole ex-
pansion gives the BI-RME method the additional ad-
vantage of permitting to find the overall Y-matrix of
the whole component, by a very efficient algorithm.

This feature will be discussed in an extended version
of this paper.

The same type of reasoning reported in [1] leads to
the following wide-band representation of the general-
ized Y-matrix:

( ) = +

+
( )

(1)

where = , = and relates the cur-
rent of the TE mode on the reference plane (see
Fig. 1) to the voltage of the TE mode on the refer-
ence plane . In this expression and are
real coefficients which determine the low-frequency
behavior of ; is the the -th eigenvalue of the
equation (see also Fig. 2):

+ = 0 in (2)

= 0 on (3)
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Fig. 2. The geometry of the problem.

and the coefficients are deduced from the -th
eigenfunction by the equation:

=
1

(4)

=
sin in [ ]

0 elsewhere
(5)

where is a coordinate taken along the boundary ,
and [ ] is the interval spanned by the -th port.

The eigensolutions of (2), (3) are determined by
the BI-RME method, just as described in [1]. On
the contrary, and cannot be expressed by
the simple approximate formulas used in that paper,
because these formulas assume that the distances be-
tween the reference planes and the discontinuities are
one half cutoff-wavelength of the waveguide, at least.
Of course, this assumption cannot be made for the
building blocks resulting from the segmentation tech-
nique, where these distances can be arbitrarily small.
Therefore, in this case and must be deter-
mined numerically. A convenient method is discussed
below.

We start from the general formula

= (6)

where is the tangential magnetic field, generated by
a unit TE -mode voltage applied at , when all other
voltages are zero. satisfies the boundary integral
equation [7]:

( ) ( ) =
( )
2

+ cos
( )

( ) (7)

where:

( ) =
H ( )

4
(8)

is the free-space Green’s function in two dimensions.
Equation (7) determines the magnetic field for any pos-
itive value of , excepting those at which the homoge-
neous equation has non-trivial solutions. These values
are the resonance wavenumbers of the short-circuited
element of Fig. 1, i.e., the eigenvalues of (2), (3). Then
for any positive value of below the lowest resonance,
the solution of (7) is a continuous function of , and,
according to (1) and (6), we expect it is of the type:

=
( )

+
( )

+ ( ) (9)

where and are real functions defined on , re-
lated to and by the equations:

= (10)

= (11)

Then we need a method for the determination of
and .

In the Appendix we show that the free-space Green’s
function in (7) can be replaced by

( ) =
1

2
ln

1
2

( 1)
( !)

2
ln 1

1
2

1
(12)

where is an arbitrary distance. This replacement has
two advantages: - the new Green’s function is real,
reflecting the standing-wave behavior of the field in
a closed and lossless region; - it has the form of a
power series in , like (9). This last feature permits to
derive the following equations, obtained by substitut-
ing (9) into (7), replacing ( ) by (12), and equating
terms containing equal powers of on both sides of
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Fig. 3. The H-plane double bend used to test the algorithm.

Fig. 4. Amplitude of the S-parameters of the junction of
Fig. 3.

the integral equation:

( ) ln = ( )

+
cos

( ) (13)

( ) ln = ( )
4

ln 1

+ ( )
cos
2

1
2

ln (14)

Solving these equations we obtain the functions and
, that permit the calculation of and by

(10), (11).

NUMERICAL IMPLEMENTATION

Functions and are approximated by:

( ) = ( ) ( ) = ( ) (15)

where is a set of basis functions defined on ,
and , are unknown coefficients. Using the
Galerkin’s method, (13) and (14) are converted into
the following matrix equations:

= (16)

= + (17)

where: , are the vectors of the coefficients ,
; , are matrices and and are -

dimensional vectors, defined as:

= ( ) ( ) ln

= ( ) ( )
4

ln 1

= ( )
cos

( )

( ) ( )

= ( )
cos
2

1
2

ln ( )

Due to (10), (11), from the solution of (16) and (17),
we deduce:

= =

where is the row-vector defined as:

= = 1 2 . . .

Incidentally, we note that many elements of the matrix
are available as by-products of the algorithm used

to find the eigensolutions of (2), (3).

VALIDATION OF THE ALGORITHM

To validate the algorithm, we analyzed the WR-90
double bend of Fig. 3 by the segmentation method, cal-
culating the generalized Y-matrix of each bend by the
described procedure. Five modes were considered at
the reference planes , . The boundary of each
bend was divided into 46 segments and a set of 46
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rectangular pulse base functions were used in the ap-
proximations (15). The Y-matrix of the cascade of the
two bends was used to calculate the scattering param-
eters relating the TE wave amplitudes at the ports
1 and 2 (dots in Fig. 4). For comparison, the double
bend was analyzed “en bloc" by the method [1], obtain-
ing nearly the same results (continuous lines). Though
the computation of the coefficients and has
been not yet optimized with respect to the CPU time,
the analysis by the generalized Y-matrix is much faster
than the other (about 20 sec against 120 sec, on a Sun
Sparcstation 10).

CONCLUSIONS

The described procedure shows how the BI-RME
algorithm can be extended to determine the general-
ized Y-matrix of arbitrarily shaped H-plane waveg-
uide building blocks. The numerical example con-
firms the advantage of using the BI-RME approach
together with the segmentation method, to reduce the
CPU time.

APPENDIX

From the Green’s second identity we obtain:

J ( ) J ( ) =

J ( )
J ( ) (18)

where and J denote the electric field and the Bessel
function of the first kind and zero order, respectively.
The integral on is zero because:

J ( ) + ( ) = 0 + = 0 in

On the other hand, on the boundary we have:

= =

( )
= ( ) =

( )
cos

and (18) can be rewritten as:

( ) ( ) =

cos
( )

( )

Therefore, replacing in (7) the Green’s function (8) by:

( ) =
H ( )

4
+ ( )

( = arbitrary constant), equation (7) remains valid.
Using:

=
1
4

+
1

2
+ ln

2

where is the Euler’s constant and is an arbitrary
distance, we have:

( ) =
1
4

N ( )
2

+ ln
2

J ( ) =

1
2

( 1)
( !) 2

1 +
1
2

+ . . .
1

1
2

J ( ) ln

from which we obtain (12) by power-expanding J .
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