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ABSTRACT

This paper describes the extension of the BI-RME
method to the determination of the generalized Y-
matrix of arbitrary H-plane waveguide junctions. The
method yields this matrix in the form of apole expan-
sion in the frequency domain. The generalized ma-
trix isvery useful in the wideband analysis of complex
structuresthat include the junction asa building block.
Anexample demonstratesthe advantages of thisexten-
sion of the BI-RME method.

INTRODUCTION

Recently, we described and implemented in a CAD
tool a very efficient algorithm (BI-RME method) for
the wideband modeling of waveguide components[1],
[2], [3], [4], [5]. Though, in principle, the BI-RME
method can be used to analyze “en bloc" very complex
circuits(e.g., multiplexers or beam forming networks),
its direct use in the analysis of large components may
benot convenient. Inthiscase, asarule, itispreferable
to segment the component into building blocks and to
apply the full-wave analysis only to the blocks whose
frequency behavior is unknown. The building blocks
must be modeled by some generalized matrix, such as
the Y-matrix [6].

This paper describes the extension of the BI-RME
method to the determination of the generalized Y-
matrix of an arbitrarily shaped el ement of arectangular
waveguide circuit in the H-plane (Fig. 1). Apart from
the efficiency of the BI-RME method in the analysis
of the blocks, the peculiarity of yielding directly the
wideband model of a block in the form of a pole ex-
pansion gives the BI-RME method the additional ad-
vantage of permitting to find the overall Y-matrix of
the whole component, by a very efficient algorithm.
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Fig. 1. An arbitrarily shaped H-plane waveguide element.
Many TE, o modes are considered at the planes S,,,.

This feature will be discussed in an extended version
of this paper.

THEORY

The same type of reasoning reported in [1] leads to
the following wide-band representation of the general-
ized Y-matrix:
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where k = w, /e, = +/u/c and Y27 relates the cur-
rent of the TE,o mode on the reference plane 5., (see
Fig. 1) to the voltage of the Tqu mode on the refer-
ence plane 5,,. Inthisexpression A%:% and B are
real coefficients which determine the low- frequency
behavior of Y P9 : x; isthe the i-th eigenvalue of the
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eguation (see aso Fig. 2):
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Fig. 2. The geometry of the problem.

and the coefficients C” . are deduced from the i-th
eigenfunction v; by the equatlon
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where s is a coordinate taken along the boundary 3.5,
and[ s,,, 3., ] istheinterval spanned by the m-th port.

The eigensolutions of (2), (3) are determined by
the BI-RME method, just as described in [1]. On
the contrary, A7, and B9, cannot be expressed by
the simple approximate formulas used in that paper,
because these formulas assume that the distances be-
tween the reference planes and the discontinuities are
one half cutoff-wavelength of the waveguide, at |east.
Of course, this assumption cannot be made for the
building blocks resulting from the segmentation tech-
nique, where these distances can be arbitrarily small.
Therefore, in this case A7, and 17,9, must be deter-
mined numerically. A convenl ent method isdiscussed
bel ow.

We start from the general formula

m.

vy = / " er Hds )

where H ! isthetangential magneticfield, generated by
aunit TE,o-mode voltage applied at .5,,, when all other
voltages are zero. H! satisfies the boundary integral

equation [7]:
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is the free-space Green's function in two dimensions.
Equation (7) determinesthe magneticfield for any pos-
itive value of &, excepting those at which the homoge-
neous equation has non-trivial solutions. These values
are the resonance wavenumbers of the short-circuited
eement of Fig. 1, i.e, theeigenvaluesof (2), (3). Then
for any positivevalue of % below the lowest resonance,
the solution of (7) is a continuous function of %, and,
according to (1) and (6), we expect it is of the type:
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Jnk n

mo = +O (k) 9)

where o? and 3¢ are real functions defined on 9.5, re-
lated to A7:7, and 579, by the equations:

Ava = /"" € 0l ds (10)
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Then we need a method for the determination of a9
and 34.

Inthe Appendix we show that the free-space Green's
function in (7) can be replaced by

Inf—i - kZh(_l)h
a

1
2r 2r =" (W)

r\ % r 1

(3) (n-1-3
where « isan arbitrary distance. This replacement has
two advantages: / - the new Green's function is real,
reflecting the standing-wave behavior of the field in
a closed and lossless region; /i - it has the form of a
power seriesin k, like (9). Thislast feature permitsto
derive the following equations, obtained by substitut-
ing (9) into (7), replacing G(r) by (12), and equating
terms containing equal powers of % on both sides of

G'(r) = —

;) @2
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Fig. 3. The H-plane double bend used to test the algorithm.
the integral equation:
7{ a? (s In ds
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Solving these equationswe obtain thefunctionsa? and
37, that permit the calculation of A2:%, and 577, by
(10), (12).

NUMERICAL IMPLEMENTATION
Functions o and /3¢ are approximated by:

K K
af(s) = _wh fu(s)  Ba(s) =)yl fe(s)  (19)

k=1 k=1

where { fk} isaset of basis functions defined on 9.5,
and z7,, y’, are unknown coefficients. Using the
Galerkin's method, (13) and (14) are converted into
the following matrix equations:

Mx? = u? (16)
My? = Nx? +v; a7)
where: x?, y? are the vectors of the coefficients 27 , ,

y? M, Nare K x K matricesand u?, and v¢ are i'-
dimensional vectors, defined as;
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Fig. 4. Amplitude of the S-parameters of the junction of
Fig. 3.
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Due to (10), (11), from the solution of (16) and (17),
we deduce:
AT, = WE ] Biit = WoY!

wherew? isthe row-vector defined as:

Sm,
- P ,
W, = / el frnds
Js

Zm,

h=1,2,...,K

Incidentally, we note that many elements of the matrix
M are available as by-products of the algorithm used
to find the eigensolutions of (2), (3).

VALIDATION OF THE ALGORITHM

To validate the algorithm, we analyzed the WR-90
double bend of Fig. 3 by the segmentation method, cal-
culating the generalized Y-matrix of each bend by the
described procedure. Five modes were considered at
the reference planes 51, S2. The boundary of each
bend was divided into 46 segments and a set of 46
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rectangular pulse base functions were used in the ap-
proximations (15). The Y-matrix of the cascade of the
two bends was used to calculate the scattering param-
eters relating the TE g wave amplitudes at the ports
1 and 2 (dots in Fig. 4). For comparison, the double
bend wasanalyzed “en bloc" by themethod [1], obtain-
ing nearly the same results (continuous lines). Though
the computation of the coefficients A?:% and B%:%, has
been not yet optimized with respect to the CPU tlme
the analysisby the generalized Y-matrix is much faster
than the other (about 20 sec against 120 sec, on a Sun
Sparcstation 10).

CONCLUSIONS

The described procedure shows how the BI-RME
algorithm can be extended to determine the general-
ized Y-matrix of arbitrarily shaped H-plane waveg-
uide building blocks. The numerical example con-
firms the advantage of using the BI-RME approach
together with the segmentation method, to reduce the
CPU time.

APPENDIX
From the Green's second identity we obtain:

/q (EVZJO(kr) - JOUW‘)VZE) 1S =
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where F and Jy denote the electric field and the Bessel
function of the first kind and zero order, respectively.
Theintegral on S is zero because:

V2h(kr) + K2 Jo(kr) =0 V2E+k?E=0 inS

On the other hand, on the boundary @5 we have:
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and (18) can be rewritten as:
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Therefore, replacing in (7) the Green’sfunction (8) by:

G'(r) =

(2
M + C,]O(kr)
4j

(C' = arbitrary constant), equation (7) remains valid.
Using:

47 27

where v is the Euler’'s constant and « is an arbitrary
distance, we have:

G'(r) = —%1 [No(kr) 2 (7 +In ) Jo(kr)] =
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from which we obtain (12) by power-expanding J.
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